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First Passage Times for Correlated Random Walks 
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It is generally difficult to solve Fokker-Planck equations in the presence of 
absorbing boundaries when both spatial and momentum coordinates appear in 
the boundary conditions. In this note we analyze a simple, exactly solvable 
model of the correlated random walk and its continuum analogue. It is shown 
that one can solve for the moments recursively in one dimension in exact 
analogy with first passage problems for the Fokker-Planck equation, although 
the boundary conditions are somewhat more complicated. Further 
generalizations are suggested to multistate random walks. 
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1. INTRODUCTION 

It has long been known that the boundary condition for a system described 
by a Fokker-Planck (FP) equation and an absorbing boundary S is p = O 
for all r C S, provided that the FP equation contains spatial but not 
momentum coordinates. When momentum or velocity coordinates appear in 
the FP equation the formulation and solution of the resulting problem 
becomes more complicated, as was first pointed out by Wang and 
Uhlenbeck. ~1) There are several studies of  systems with absorbing boundaries 
in which velocity conditions must be obeyed for the impinging particles to be 
absorbed at a surface. ~2-s) However, there is one simple case which does not 
seem to have been analyzed earlier and which can be solved exactly. In this 
note we present results for first passage times of the continuum limit of  the 
simplest correlated random walk ~6-8) and some of its generalizations. It has 
been remarked that the correlated random walk as discussed here, is the 
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simplest example of a multistate random walk. ~1~ The correlated random 
walk is a multistate random walk because the state probabilities depend both 
on the site and direction of motion. Thus, the present work can be regarded 
as the simplest example of the first passage time problem for such random 
walks. For an extensive mathematical discussion of the solutions of the 
telegrapher's equation in unbounded space the reader is referred to the paper 
by Goldstein. ~8) There are several papers on multistate random walks in 
unbounded space, t11-15) 

2. FIRST PASSAGE TIME STATISTICS FOR THE 
CORRELATED RANDOM WALK 

The simplest case to be considered is a one-dimensional correlated 
random walk confined to an interval ( - L ,  L)  in which both end points are 
absorbing provided that the random walk is in the appropriate state. The 
distinct states correspond to momentum in a physical description. In the 
present model this translates into the requirement that the random walker be 
moving in the right direction when it impinges on an absorbing point. We 
need not restrict ourselves to the case in which the switching probabilities are 
constant in space, but will consider the generalization to both the discrete 
and continuous telegraphers equations with space-dependent switching 
probabilities. Let us therefore define 

an(r ) = Pr{First passage time = n starting from site r[ 

first step goes from r to r + 1 } 

bn(r ) = Pr{First passage time = n starting from site r] 

first step goes from r to r - 1 } 

a(r) = Pr{Random walk does not switch directions ar r} 

fl(r) = 1 -- a(r) 

These definitions imply the set of equations 

a n + l ( O =  a(r + 1)an(r + 1) +fl(r + 1)bn(r + 1) 

b . + l ( r ) = f l ( r -  1) a n ( r -  1) + a ( r -  1 ) b n ( r -  1) 
(1) 

together with the boundary conditions an(L ) = bn(--L ) = 0. The continuum 
limit is obtained by scaling space and time by t = nat, x = rAL where At and 
AL ~ 0 in such a way that 

e =  lim AL/At  (2) 
t,AL ~0 



First Passage Times for Correlated Random Walks 327 

The switching probability a(r) in the limiting process will be assumed to take 
the form 

a(r) = 1 -At / (2T(r) ) ,  fl(r) =At/(2T(r)) (3) 

where T(r) has the dimensions of time. On taking the limits At, AL -~ 0 and 
setting x = rAL, we find that a(x, t) and b(x, t) satisfy the coupled set of 
equations 

Sa Sa 1 
- e ~xx + ~ (b - a )  (4a)  St 

c~b c~b 1 
-- C ~ x  + ~ ( a - b )  (4b) St z l ~ a )  

which is to be solved subject to the boundary conditions a (L , t )=  
b(--L, t ) =  0. It is both convenient and makes some physical sense to 
consider, instead of a(x, t) and b(x, t) the variables 

u = a + b  

We find that u and v satisfy 

v = a - b  

Su Sv 

cgt Sx 

or, on eliminating u, 

~v Su v 
St Sx T(x) 

S2v 
St 2 

1 91.) ~2V 
~- - -  - - c  2 _ _  

T(x) St Sx 2 

c~u c~v 
St Ox 

(5) 

(6) 

(7) 

Hence v satisfies a spatially dependent telegrapher's equation and once v is 
known u can be found by integrating with respect to t. However, these 
equations are deceptively easy to solve since the boundary conditions are 
coupled. If instead of using the functions u and v one remains with equations 
in terms of a and b then the boundary conditions on a(x, t) alone are 

a(L, t )=O,  a ( - L , t ) +  2T(--L) (3a c~a) = 0  (8) 

The secondary boundary condition is found by solving for b in terms of a 
from Eq. (4a). 
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3. MOMENTS OF FIRST PASSAGE TIME 

While it would clearly pose a formidable problem to solve Eqs. (4) or 
(6) for even the most trivial choice T(x) = const, it is possible to use Eq. (4) 
to calculate moments of the first passage time in one dimension, analogous 
to the situation for one dimensional Fokker-Planck equations. (16'1v) Denote 
the nth moments of the first passage times starting from x and initially 
moving to the right (left) to be p,(x)(v,(x)). These are defined by the 
relations 

[dn(X)=f~ tna(x,t) dt, o . ( x ) = f o  t"b(x,t) dt (9) 

If we multiply Eq. (4) by t" and integrate with respect to t we find 

1 -nu._l(x)=c au.(x) + [o.(x)-u~ 
ax 

do.(x) 1 
-no._l(X)=-c dx + 2-U  [un(x)-~ 

(10) 

where ~0(x) = Vo(X ) -- 1. Consider the calculation of the first passage times, 
n = 1. For this it is convenient to introduce the auxiliary functions 

U=/.t l  + vl, V=t~l--Vl (11) 

corresponding to u and v which satisfy 

V' = 2p(x) V 

2 
V I - -  

c 

(12) 

where p(x)-~ [2eT(x)]-1. This set of equations is easily solved since one can 
find both U and V by successive integrations. One finds in this way that 

f fx U(x) = 2A p(~) d~ + B -- -4  ~p(~) d~ 
L C - L  

(13) 
2x 

V(x) =A - - -  
C 

where A and B are the constants 

A = - - ~  ~p(~)d 1 +  p(~)d~ 
C - L  - -L 

B = A + 2L/e 
(14) 
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Notice that when T(x)  = T ( - x )  so that there is symmetry around the origin, 
A = 0 from which it follows that U ( x ) =  U ( - x ) .  Since it would ordinarily 
not be possible to distinguish gl (x )  and ol(x ), the function U(x) plays the 
major role. In particular, if p ( x ) =  1/L o = const then U(x) is 

2L 4 
V ( x ) - - -  - -  (x ~ - L  2) (15) 

e cL o 

which clearly differs from zero at x = :t:L. This is to be expected since the 
possibility exists that the diffusing particle is moving in the wrong direction 
when it reaches an end point. Higher moments of the first passage time can 
be found by using exactly the same argument as for the first moment, as can 
the probability of being absorbed at a particular point. 

4. GENERALIZED MULTISTATE WALKS 

Although there is historical precedent for studying the particular 
correlated random walk whose diffusive properties are described by the 
telegrapher's equation is should be remarked that this is only one example of 
the more general class of multistate random walks. Goldstein (8) has 
mentioned briefly some generalizations that he had considered that led to 
partial differential equations of order greater than 2, without presenting any 
details. Such generalizations can be produced in many different ways. For 
example, consider again a one dimensional random walk in which the 
random walker can exist in any one of k > 2 states. Let ai,n(r ) be the joint 
probability that the random walker is in state i, at position r, and that the 
first passage time to absorption is equal to n. Let us suppose that a random 
walker in state i will make a step to the right with probability 0i or a step to 
the left with probability 1 - 0 ~ .  Let us further assume that at each step the 
probability that the state of a random walker at site r changes from i to j is 
aij(r ). Then Eq. (1) is replaced by 

ai,n + 1@) = Oi S~ flo( r + 1) aj,n(r + 1) 
J 

+ ( 1 - - O i ) ~ f l i i ( r -  1) a j , ~ ( r -  1) (16) 
J 

If one adds the scaling requirements 

flu(r) = 1 -- A t / r i ( r )  

f l i j ( r )=At /To(r ) ,  i : / : j  (17) 

x = rAL, r = 0, 1, 2,..., c =  lira AL/A t  
AL,At-~O 
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where 
1 1 

-- • Tij(r) (18) Ti(r) j(~"i) 

then in the limit AL,  A t -~  0 Eq. (16) goes over into the set of  equations 

3a; = ( 2 0 i -  1)c ~3a~. 1 (19) 
St ~ + ~ '  (aj - ai) vii(x-- ~ J 

generalizing Eq. (4). These reduce to the two state problem corresponding to 
the correlated random walk if we choose k = 2, 01 = 1, 02 = 0, T12 = T21 = T. 
As before one can write equations for first passage t ime moments  analogous 
to Eq. (10) except that  it would be difficult to solve them for general Tij(x ) 

as we have in the k = 2 case. 
Other general izat ions of  the correlated random walk are possible which 

include longer range steps or analogues of  the continuous t ime random 
walk. ~18) It is interesting to note that  since the random walks discussed so far 
are bas ica l ly  Markoff ian the dis tr ibut ion for displacements  in the absence of 
boundaries  must  tend to the Gauss ian  form by the central l imit  theorem. 
This was proved in detail  by Goldstein (s) for the simplest  correlated random 
walk. It is not known whether it follows that  the associated first passage time 
densities must  approach  the density associated with a Gauss ian ,  or the 
condit ions that  must  be satisfied to insure that  it does. 

I am indebted to Dr. V. Seshadri  for some useful discussions of  this 

class of  problems.  
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